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Distribution and density of the partition function zeros for the diamond-decorated Ising model

Yen-Liang Chou and Ming-Chang Huang
Department of Physics, Chung-Yuan Christian University, Chung-Li 320, Taiwan
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Exact renormalization map of temperature between two successive decorated lattices is given, and the
distribution of the partition function zeros in the complex temperature plane is obtained for any decoration
level. The rule governing the variation of the distribution pattern as the decoration level changes is given. The
densities of the zeros for the first two decoration levels are calculated explicitly, and the qualitative features
about the densities of higher decoration levels are given by conjecture. The Julia set associated with the
renormalization map is contained in the distribution of the zeros in the limit of infinite decoration level, and the
formation of the Julia set in the course of increasing the decoration level is given in terms of the variations of
the zero density.
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I. INTRODUCTION

About one and half decades ago, spin models defined
hierarchical lattices received much attention in the literat
@1–9#. In general, to construct a hierarchical lattice we fi
start with a unit, which may be a bond or a cell, and th
proceed a given type of bond or cell decoration iteratively
the infinite limit. Thus, a hierarchical lattice has fractal stru
ture, and the thermodynamic limit for a physical system
fined on a hierarchical lattice is well defined. Hierarchic
spin models attract researchers’ interest mainly due to
reasons. First, these models are exactly solvable in the
text of the Migdal-Kadanoff renormalization scheme@10,11#.
Second, owing to the inhomogeneity in the coordinat
number of lattice sites some particular properties revea
from the models may provide insights to inhomogeneo
systems such as random magnets, polymers, and percol
clusters@12#.

Q-state Potts model defined on a diamond hierarch
lattice is one example. Starting with a bond, a diamond
erarchical lattice is obtained by replacing bonds by diamo
iteratively to the infinite limit. There exists a remarkab
richness of phenomena for the model in the absence of
ternal fields. In particular, the limiting set of the partitio
function zeros in the complex temperature plane, also
ferred as the Fisher zeros, are essentially the Julia sets
ciated with the rational map defined by renormalizati
transformation@6,7#, and the Julia set possesses multifrac
structure forQ.0 @13–15#.

The interest about the loci of partition function zeroes h
been raised after the classical works of Yang and Lee
regular lattices@16,17#. After the remarkable Lee-Yang circl
theorem, Fisher studied partition function zeros in the co
plex temperature plane and showed that the distribution
unit circle in the sinh(2J/kBT) complex plane for the two-
dimensional zero-field Ising model on simple square latt
@18#. Since then, the distributions of Fisher zeros of the Is
model with isotropic or anisotropic couplings on a variety
classic planar lattices have been investigated@19–22#. Re-
cently Lu and Wu completed the Ising picture by calculati
the density of zeros for two-dimensional Ising model in ze
field as well as in a pure imaginary fieldip/2 on a variety of
1063-651X/2003/67~5!/056109~9!/$20.00 67 0561
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classic planar lattices@23#. In principle, by knowing the ze-
ros of the partition function and the corresponding densit
we may deduce all the thermodynamic characteristics o
system. For example, the density of the zeros near the cri
point can be used to extract the critical exponents@20,21#,
and the logarithmic singularity of the specific heat for t
two-dimensional zero-field Ising model is the result of t
linearly vanishing density of the zeros near the real a
@18,23#.

In this paper we study the distributions and the densi
of the Fisher zeros of the zero-field Ising model on squ
lattices with diamond-type bond decorations, referred
diamond-decorated Ising model~DDIM !. The lattices used in
the model are constructed by starting with a simple squ
lattice, and then by implementing diamond-type bond de
rations to each bond iteratively to any desired degree.
DDIM, there exists a well-defined thermodynamic limit fo
any finite degree of decorations, and each primary bond
comes a diamond-hierarchical lattice used in the diamo
hierarchical spin model for the limit of infinite decoration
In our previous work, the properties of ferromagnetic pha
transitions of DDIM have been investigated extensively
finite as well as infinite decoration levels@24#. Here we con-
centrate on the distribution and the density of the Fis
zeros.

Similar analyses on the distribution of the Fisher ze
have been carried out for triangular type Ising lattices w
cell decorations@25#. These lattices possess the Sierpin´ski
gasket as the inherent structure for a primary triangle in
limit of infinite decoration level. The results indicate that th
distribution of zeros for the infinite decorated lattices co
cides with those for the model defined on the Sierpin´ski gas-
ket, and the distribution of zeros appears to be an union
infinite scattered points and a Julia set called the Jor
curve, and the scattered points are bounded by the Jo
curve. Note that the Jordan curve is a quasi-one-dimensi
circle with the Hausdorff dimension equal to 1. It is also w
known that the limiting set of the distribution of the zeros
the diamond-hierarchical Ising model~DHIM ! is a Julia set,
which owns a multifractal structure@6,7,13–15#. The Julia
set, which is a bounded planar distribution with the Hau
dorff dimension greater than one, is quite different from t
©2003 The American Physical Society09-1
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Jordan curve. Based on these observations, we may ex
that the Julia set occurring in DHIM may also appear
DDIM, and thence we may understand the formation of
multifractal structure in the Julia set by studying the var
tion of the distribution and the density of the zeros in t
course of increasing the decoration level of DDIM to t
infinite limit.

This paper is organized as follows. In Sec. II, we brie
describe how to deduce the exact expression of free en
via the construction of the exact renormalization map of te
perature between two successive decoration levels and
use of the known results of the Ising model on simple squ
lattice. In Sec. III, we study the distribution of the Fish
zeros and exhibit the change of the distribution pattern as
decoration level increases. In Sec. IV, we determine the d
sity of the zeros for the first two decoration levels by usi
the results for the case of simple square lattice, and the
sities for higher decoration levels are given qualitatively
conjecture. In Sec. V, we discuss how the Julia set arise
the limit of infinite decoration level and characterizes its g
bal mutifractal structure. Finally, Sec. VI is preserved f
summary and discussion.

II. FREE ENERGY

We construct the exact expression of the free energy
DDIM with an arbitrary decoration leveln in this section. A
simple square lattice with diamond-type bond decorations
to the leveln is referred as ann lattice. Then, simple squar
lattice itself is 0-lattice, and its connecting bonds betwe
any two nearest neighbors are named as 0 bonds. We de
the total site number and bond number of 0 lattice asns and
nb with nb52ns . A 1 bond is formed by replacing a 0 bon
by a diamond that consists of four 0 bonds. Starting with
bond, after then fold iterative replacements of 0 bonds wi
1 bonds, we obtain ann bond that has site numberS(n)

52(4n12)/3 and 0 bond numberB(n)54n. An n lattice is
formed by replacing all 0 bonds of a 0 lattice withn bonds.
For ann lattice, the average site and bond numbers per
mary square of 0 lattice areNs

(n)52S(n)23 and Nb
(n)

52B(n), respectively. The construction procedure is schem
tized in Fig. 1.

The general form of the partition function for DDIM de
fined on ann lattice reads

FIG. 1. A decorated bond with the decoration level~a! n50, ~b!
n51, and~c! n52. Note that the Ising spins with the Latin sub
scripts are referred as inner spins.
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Z(n)5(
$s%

F )̂
i , j &

exp~hs is j !G , ~1!

where the sum is over all bond-connected pairs^ i , j & of n
lattice, and the Ising spin takes two possible values,s i5
61. Here we consider uniform ferromagnetic couplin
characterized by the coupling strengthJ, and the dimension-
less coupling parameterh is defined ash5J/kBT.

To calculate the partition function of Eq.~1! for an arbi-
trary n lattice, we use the bond-renormalization scheme
evaluating the Boltzmann factors associated with ann bond.
The details of the derivations are given in Ref.@24#, and we
briefly summarize the results in the followings.

The Boltzmann factor associated with the 0 bond, deno
by B^m,y&

(0) , is given as exp(hsmsn), and it can be written as

B^m,y&
(0) 5cosh~h!1smsnsinh~h!. ~2!

There are decorated (S(n)22) sites for ann bond. The Ising
spins defined on the decorated sites couple only to th
belonging to the samen bond, and we refer them as inne
spins. Then we may define the Boltzmann factors associ
with an n bond,B^m,y&

(n) , as the result of taking the sum ove
the inner spins for the product of all Boltzmann factors a
sociated with then bond:

B^m,n&
(n) 5S 1

2D (S(n)22)

3 (
sa ,sb , . . . ,ss

exp@h~smsa1sasb1•••1sssn!#.

~3!

Here the two subscriptsm andn denote the two primary site
before decorations, the front factor is added for the norm
ization of the sum, and the sum is over the (S(n)22)-inner
spins. By substituting the expression of Eq.~2! into each
Boltzmann factor of Eq.~3!, we have

B^m,n&
(n) 5R(n)~h!@cosh~h (n)!1smsnsinh~h (n)!#, ~4!

for n>1, where the functionR(n)(h) is given as

R(n)~h!5)
k51

n

@exp~h (k)!#4n2k
, ~5!

andh (k) is determined by the recursion relation,

exp~h (k)!5cosh~2h (k21)!, ~6!

with the initial conditionh (0)5h for 1<k<n.
It is well known that the corresponding free energy p

bond perkBT of Eq. ~1! for the case of 0 lattice can b
written as

f (0)52
1

4
ln sinh~2h!2

1

4E0

2pdf

2pE0

2p du

2p

3 lnFsinh~2h!1
1

sinh~2h!
2Q~u,f!G , ~7!

with
9-2
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Q~u,f!5cosu1cosf. ~8!

By observing that up to a factorR(n)(h) the effective
Boltzmann factor of ann bond possesses the same form
that of a 0 bond, we can express the free energy density o
n lattice as@24#

f (n)5 f D
(n)2

1

4B(n)
ln sinh~2h (n)!2

1

4B(n)E0

2pdf

2pE0

2p du

2p

3 lnFsinh~2h (n)!1
1

sinh~2h (n)!
2Q~u,f!G , ~9!

where f D
(n) is the contribution from the factorR(n)(h),

f D
(n)52

1

B(n)
ln R(n)~h!, ~10!

which can be expressed as

f D
(n)52 (

k51

n
1

4k
ln@cosh~2h (k21)!#, ~11!

by using the recursion relation of Eq.~6!. Note that thef D
(n)

part exists only forn>1.

III. FISHER ZEROS

The partition function zeros of a 0 lattice in the therm
dynamic limit can be obtained by setting the argument of
logarithm in the free energy density of Eq.~7! equal to zero
@23#. It is known that the zeros may lie on the unit circ
usinh(2h)u51 @23# or on two circlesutanh(h)61u5A2 @18#,
depending on the variable used for the complex tempera
plane. In this paper, we study the distribution and density
the Fisher zeros in the complex tanh(h) plane. The basic
features appearing in the complex sinh(2h) plane are essen
tially the same as those we obtain in the complex tanhh)
plane.

By observing the free energy density of Eq.~9!, in the
thermodynamic limit we can obtain the distribution of zer
of an n lattice from the solutions of two conditions,

sinh~2h (n)!1
1

sinh~2h (n)!
2Q~u,f!50 ~12!

and

cosh~2h (k21)!50 for k51,2, . . . ,n. ~13!

Note that the latter can also be viewed as the condition of
zeros for the Ising system defined on ann bond, and such a
system becomes DHIM in the limit of infiniten.

From the result of two circles for the partition functio
zeros of a 0 lattice in the complex tanh(h) plane, we may
conclude that the solution of Eq.~12! is two circles in the
complex tanh(h(n)) plane:
05610
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utanh~h (n)!61u5A2. ~14!

The two circles intersect at two points,i and2 i . As shown
in Fig. 2~a!, due to the intersections there is a ring contain
in the two circles. For the purpose of identification, we re
the circles as twon cycles and the ring asn ring. Note that in
displaying the distributions of zeros, we always use bo
faced curves for the rightn cycle and its descendants, an
gray curves are for those from the leftn cycle. This distribu-
tion also appears to have the symmetry of inversion ab
the center tanh(h(n))50.

For the purpose of comparing the distributions of ze
among differentn lattices, we have to bring the zeros to th
complex plane of an unique variable chosen to be tanh(h). To
achieve this, we notice that the recursion relation of Eq.~6!
can be rewritten as

tanh~h (n)!5
2@ tanh~h (n21)!#2

11@ tanh~h (n21)!#4
, ~15!

which has the inverse map given as

tanh~h (n21)!56S 16A12@ tanh~h (n)!#2

tanh~h (n)!
D 1/2

. ~16!

Then, starting with the twon cycles in the complex tanh(h(n))
plane, we can obtain the corresponding distribution of ze
in the complex tanh(h) plane by performing then fold back-
ward iterations provided by Eq.~16!.

After the first backward iteration, we show the resulta
distribution in the complex tanh(h(n21)) plane in Fig. 3~a!
where the points indicated by crosses are the preimage
the map of Eq.~15! for the centers of twon cycles, 1 and
21. The results indicate that each of then cycles shown in
Fig. 2~a! splits in to two closed curves referred as (n21)
cycles. There are eight intersection points between the
scendants of the rightn cycle and those from the leftn cycle,
and the loci of the intersections are determined by the
verse maps of the points,i and 2 i , which are the intersec
tions of two n cycles. There are four rings, referred asn
21) rings, caused by the intersections. Note that the dis

FIG. 2. ~a! The distribution of the Fisher zeros of ann lattice in
the complex tanh(h(n)) plane as the left~gray! and the right~bold-
faced! n cycle, and~b! the density~left vertical scale! and the radius
~right vertical scale! of the Fisher zeros in the leftn cycle.
9-3
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bution shown in Fig. 3~a! are just the distribution of zeros i
the complex tanh(h) plane subject to the condition of Eq
~12! for an 1 lattice.

Proceeding with the inverse map given by Eq.~16! from
the complex variable tanh(h(n21)) to tanh(h(n22)) for the four
(n21)-cycles, we obtain 12 (n22) cycles, as shown in Fig
4~a!. The (n22) cycles contain 16 (n22) rings caused by
the 32 intersections among the cycles. The intersections
again the preimages of the map of Eq.~15! for the loci of the
intersections among the (n21) cycles.

Continuing with this procedure, we show the distributi
of zeros in Fig. 5 forn54 and Fig. 6 forn58. In general,
the zero distribution for an lattice in the complex tanhh
plane, subject to the condition of Eq.~12!, is the union of
@212(4n21)/3# 0 cycles, which have 4n11/2 intersections,
and these intersections yield 4n 0 rings contained in the 0
cycles. The 0 cycles can be divided into two classes:
consists of the descendants of the leftn cycle with @2
12(4n2121)/3# members and the other has 4n/2 members,
which are the descendants of the rightn cycle. The intersec-
tions only occur between two 0 cycles belonging to differe
class. The distribution always maintain the inversion symm
try about the center tanhh50.

For the condition of Eq.~13!, it can be rewritten in terms
of the tanhh(n) variable as

tanhh (k21)56 i for k51,2, . . . ,n. ~17!

Then, for the case ofn51 the two zeros,i and 2 i , in the
complex tanhh plane are just the intersection points of twon
cycles in the complex tanh(h(1)) plane. Proceeding to th
case ofn52, we obtain, besides of the previous two zer
eight more points in the complex tanh(h) plane fromk52 in
Eq. ~17!. These additional points are the preimages of
renormalization map for the original two points, and they a
the intersection points among four (n21) cycles in the com-
plex tanh (h(n21)) plane. By induction, we may conclude th
the zeros in the complex tanh(h) plane obtained from the
condition of Eq.~17! are 2(4n21)/3 scattered points which

FIG. 3. ~a! The four (n21) cycles for the zero distribution of a
n lattice in the complex tanh(h(n21)) plane. The cycles displayed b
the bold-faced curves are the descendants of the rightn circle and
the gray curves are those from the leftn circle. The points indicated
by crosses are taken as the centers of the (n21) cycles, and they
are the preimages of the renormalization map for the centers of
n cycles.~b! The density~left vertical scale! and the radius~right
vertical scale! of the Fisher zeros in the (n21) cycle with the
center at (1,0).
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are the union of the intersection points amongk cycles in the
complex tanh(h(k)) plane for 1<k<n. in the complex
tanh(h) plane for ann lattice.

Thus, we can describe the distribution pattern of t
Fisher zeros of DDIM with the decoration leveln in the
complex tanh(h) plane as follows. There are 2(4n21)/3
scattered points given by Eq.~17!. In addition, there are@2
12(4n21)/3# 0 cycles with 234n intersections obtained
from Eq. ~12!.

Among all the zeros we obtained in the above, as a c
sequence of the Lee-Yang theorem@16,17#, the bulk critical
points correspond to the zeros falling on the physical regi
The physical region of the variable tanh(h) is 0<tanh(h)
,1 for ferromagnetic couplingsh>0. This implies that the
variable tanh(h(n)) also takes the range 0<tanh(h(n)),1 as
the physical region for anyn value.

From the solutions of the conditions of Eqs.~12! and~13!,
we know that there is only one zero in the physical regio
This zero belongs to the rightn cycle and locates at

tanh~h (n)!5
c

h(0), ~18!

with h(0)5A221 for arbitrary decoration leveln. Here, for

convenience, we use the notation ‘‘5
c

’’ to denote the equality

o

FIG. 4. ~a! The 12 (n22) cycles for the zero distribution of an
n lattice in the complex tanh(h(n22)) plane. The points indicated by
crosses are taken as the centers of the (n22) cycles, and they are
the preimages of the renormalization map for the centers of
(n21) cycles. The 12 (n22) cycles can be divided into thre
classes, I, II, and III, according to the decreasing order in the m
nitude of the circumference of a circle. The density~left vertical
scale! and the radius~right vertical scale! of ~b! the (n22) cycle,
which is the one marked I in~a!, with the center coordinate (1,0)
~c! the (n22) cycle, which is the one marked II in~a!, with the

center coordinateA11A2eip/4 ; and~d! the (n22) cycle, which is
the one marked III in ~a!, with the center coordinate

A211A2eip/4.
9-4
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established only at the phase transition point. Note that
h(0) value is just the reduced critical temperatu
tanh(J/kBTc), of the ferromagnetic phase transition for th
square Ising model, i.e.,n50.

To find the locus of the zero specified by Eq.~18! in the
complex tanh(h) plane, we can continuously use the inver
map of Eq.~16! to obtain the equivalent expression of E
~18! as

tanh~h (n2k)!5
c

h(k), ~19!

with

h(k)5S 12A12~h(k21)!2

h(k21) D 1/2

~20!

for 1<k<n. Note that in obtaining Eq.~20! for the critical
value of tanh(h(n2k)) we have used the constraint
<tanh(h(n2k)),1.

Thus, the zeroh(0) in the complex tanh(h(n)) plane corre-
sponds to the zeroh(n) in the complex tanh(h) plane, and the
h(n) value is just the reduced critical temperatu
tanh(J/kBTc) of the ferromagnetic phase transition for DDIM
with the decoration leveln. The sequence ofh(n) decreases
asn increases, and theh(n) value in the limit of infiniten is
given by the asymptotic value of the sequence ofh(n). For
the recursion relation of Eq.~15!, there are three fixed points
one repellor locating at 0.5437 . . . , and twoattractors at 0
and 1. Since theh(n) value is obtained fromh(0) via the n
fold backward iterations given by Eq.~20! and the attractors
~repellors! of the map become the repellors~attractors! of the
inverse map, we may conclude that theh(n) value is the locus
of the repellor of Eq.~15!, h(n)50.5437 . . . , for thecase of
infinite n.

FIG. 5. The zero distribution of ann lattice in the complex
tanh(h) plane obtained from the condition of Eq.~12! for n54.
05610
e
,

IV. DENSITY OF ZEROS

The density of twon cycles in the complex tanh(h(n))
plane has been determined by Lu and Wu@23#. Based on this
result, we determine the density of the zeros of DDIM in th
section by performing proper transformations. First, we
scribe the result of Lu and Wu briefly in the following.

The two cycles of Eq.~14! are written as

tanh~h (n)!615r ~a (n)!exp~ ia (n)!, ~21!

where r (a (n))5A2 is the radial distance from the cent
coordinate. By considering anM32N simple-quartic lattice
with Brascamp-Kunz boundary condition, we introduce t
zero densityg6(a (n)), that satisfies the normalization con
dition

E
0

2p

g6~a (n)!da (n)5
1

2
, ~22!

such that the number of zeros in the interval@a (n),a (n)

1da (n)# is 2MNg6(a (n))da (n) for the left (1) and right
(2) n cycle, respectively. The zero density is given as

g1~a (n)!5g2~p2a (n)!5S x

p2D U 12A2cosa (n)

322A2cosa (n)UK~x!,

~23!

where

x5
2usina (n)u~A22cosa (n)!

322A2cosa (n)
, ~24!

andK(x) is the complete elliptic integral of the first kind,

K~x!5E
0

p/2

dt
1

A12x2sin2t
. ~25!

FIG. 6. The zero distribution of ann lattice in the complex
tanh(h) plane obtained from the condition of Eq.~12! for n58.
9-5
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The density of g1(a (n)), which has the symmetry
g1(a (n))5g1(2p2a (n)), is plotted in Fig. 2~b! for the
range 0<a (n)<p. Here we also specify the radial distan
of a zero,r (a (n)), in the right vertical scale. For smalla (n),
the result of Eq.~23! has the linear behavior as

g6~a (n)!5S 362A2

p D ua (n)u. ~26!

Note that the densityg1(a (n)) of the zeros near the poin
a (n)50 is the same as the densityg2(a (n)) near the point
a (n)5p, which is the ferromagnetic phase transition point
the bulk system, and this linearly vanishing density of t
zeros near the bulk transition point leads to the logarithm
singularity of the specific heat.

To find the corresponding density in the compl
tanh(h(n21)) plane, we first write the (n21) cycles as

tanh~h (n21)!5z01r ~a (n21)!exp~ ia (n21)!. ~27!

Here the center coordinatesz0 are chosen to be the preim
ages of the map of Eq.~15! for the center coordinates ofn
cycles, tanh(h(n))51 and21, and this leads toz051, 21, i,
and2 i for the center coordinates of four (n21) cycles. The
zero density of the (n21) cycle, specified by the cente
coordinatez0, is denoted asgz0

(a (n21)), and we have the
relation

g1~a (n21)!5gi S p

2
1a (n21)D5g21~p1a (n21)!

5g2 i S a (n21)2
p

2 D , ~28!

for the distribution shown in Fig. 3~a!. Thence, we determine
the densityg1(a (n21)), and the densities of other (n21)
cycles are followed fromg1(a (n21)) according to the above
relation.

Because that the inverse map given by Eq.~16! is 1 to 4
and the (n21) cycle ofz051 is a descendant of the leftn
cycle, we can express the densityg1(a (n21)) as

g1~a (n21)!5
g1~a (n)!

4 U da (n)

da (n21)U . ~29!

To determine the transformation Jacobianuda (n)/da (n21)u,
we first notice that the (n21) cycles of z0561 are the
solutions of the equation

utanh~h (n21)!u42$@ tanh~h (n21)#21@ tanhh (n21)* !#2%

22A2utanh~h (n21)!u21150, ~30!
05610
f
e
c

where tanh(h(n21)* ) is the complex conjugate of tanh(h(n21)).
This result is obtained by substituting Eq.~15! into Eq. ~14!
for the left n cycle. By further substituting Eq.~27! with z0
51 into Eq.~30!, we obtain

r 41r 3@4 cos~a (n21)!#1r 2~422A2!

2r @4A2cos~a (n21)!#22A250. ~31!

This equation can be solved numerically to obtainr (a (n21))
and dr/da (n21). Moreover, the relation betweena (n) and
a (n21) has been specified by the map of Eq.~15!. We sub-
stitute Eqs.~21! and ~27! into Eq. ~15! to obtain

11A2 exp~ ia (n)!5
2@11r ~a (n21)!exp~ ia (n21)!#2

11@11r ~a (n21)!exp~ ia (n21)!#4
.

~32!

By differentiating this equation with respect toa (n21) and by
using the known values ofr (a (n21)) and dr/da (n21), we
can determine the derivativeda (n)/da (n21) and then obtain
the densityg1(a (n21)) according to Eq.~29!.

The numerical result of the densityg1(a (n21)) is shown
in Fig. 3~b! for the range 0<a (n21)<p with the radial dis-
tance of a zero,r (a (n21)), specified in the right vertica
scale. Our results indicate that when the complex pla
changes from tanh(h(n)) to tanh(h(n21)), the distribution den-
sity oscillates more rapidly with the peak number increas
from 2 to 4 for half cycle. The locus of the zero correspon
ing to the ferromagnetic phase transition point moves fr
a (n)50 of the leftn cycle toa (n21)5p of the (n21) cycle
of z051. For the zeros near toa (n21)5p, the density has
the linear behavior as

g1~p1a (n21)!5d1S 312A2

p D ua (n21)u, ~33!

with

d15
1

4U da (n)

da (n21)U
a(n21)5p

50.1529. ~34!

This linear behavior, again, gives the logarithmic singular
of the specific heat.

To extend the calculation of density to (n22) cycles, we
may divide the 12 (n22) cycles shown in Fig. 4~a! into
three classes named as class I, II, and III, according to
decreasing order from the longest to the smallest in the m
nitude of the circumference of the circles. Then, there
four members in each class, and all members of class I
the descendants of the leftn cycle and those belonging t
classes II and III are from the rightn cycle. Similar to the
case of (n21) cycles, we can write

tanh~h (n22)!5z11r ~a (n22)!exp~ ia (n22)! ~35!
9-6
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for the zeros of (n22) cycles, and the center coordinatesz1
are chosen to be the preimages of the map of Eq.~15! for the
center coordinates of (n22) cycles, 1, 21, i, and 2 i .
Then, we can express the densities of the (n22) cycles as

gz1

I ~a (n22)!5
g1~a (n21)!

4 Uda (n21)

da (n22)U , ~36!

and

gz1

II ,III ~a (n22)!5
gi~a (n21)!

4 Uda (n21)

da (n22)U , ~37!

respectively, where the superscript I, II, or III is used
denote the class to which a (n22) cycle belongs, and the
subscript,z1, is used to specify a (n22) cycle in the given
class. Since the members belonging to the same class ar
same up to a global rotation, we only need to determine
zero density of a (n22) cycle for each class. The cycles

z151, A11A2eip/4, and A211A2eip/4, belonging to
classes I, II, and III, respectively, are choosen for the ca
lation of the density of the respective class.

The numerical method of calculating the corresponde
between a (n21) and a (n22) and the Jacobian
uda (n21)/da (n22)u are exactly the same as we did in the la
case. The results ofr (a (n22)) ~right vertical scale! and
g(a (n22)) ~left vertical scale! are shown in Figs. 4~b!, 4~c!,
and 4~d!, respectively, for the three cycles. These results
dicate that the rapidity of oscillation in the distribution de
sity of the cycles of class I increases as the peak num
doubles with respect to the last case, while the peak num
remains to be the same for the cycles of classes II and
The zero corresponding to the critical point of ferromagne
phase transition moves froma (n21)5p of the (n21) cycle
of z051 to a (n22)5p of the (n22) cycle ofz151 of class
I. The density of the zeros near to this locus has the lin
behavior

gz151
I ~p1a (n22)!5d2S 312A2

p D ua (n22)u, ~38!

with

d25S 1

4D 2S Uda (n21)

da (n22)U
a(n22)5p

D S U da (n)

da (n21)U
a(n21)5p

D
50.0365. ~39!

From the densities obtained in the above, we may con
ture qualitatively the density of the 0 cycles withn54
shown in Fig. 5 as the following: There are 128 memb
belonging to the descendants of the (n22) cycles of classes
II and III, as displayed by bold-faced curves in Fig. 5. The
members of the 128, appearing in the outermost of Fig
05610
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are similar to a (n22) cycle of class II, and the rest have
similar shape as a (n22) cycle of class III. Up to an overal
reduction factor, the densities of the 16 members have
same oscillation pattern as that shown in Fig. 4~c! and the
densities for the rest members possess the same oscill
pattern that shown in Fig. 4~d!. For the 44 descendants of th
(n22) cycles of class I displayed by gray curves in Fig.
the corresponding density reduces but oscillates more rap
with 32 peaks in half cycle in comparing with that shown
Fig. 4~b!.

Continuing with this procedure in finding the density, w
obtain 2n11 peaks in ap period for each of the 0 cycles
which are the descendants of the leftn cycle. On the other
hand, the peak number always maintain to be 4 for each
the 0-cycles belonging to the descendants of the rightn cycle
along with the decreasing radius asn increases.

V. JULIA SET AND INFINITE N LIMIT

The recursion relation given by Eq.~15! happens to be a
rational map of degree 4. Then, from the work of Julia a
Fatou, we may conclude that the backward iterations defi
by Eq. ~16! leads towards the Julia set associated with
map of Eq.~15!.

Generally, Julia sets can be divided into two classes: so
are connected in one piece while the others are just a c
of points. The tendency of the zero density with increasinn
shown in the above section indicates that the Julia set h
belongs to the latter. Moreover, by observing the distribut
patterns and the densities of the zeros, we may conclude
a 0 cycle belonging to the descendants of the rightn cycle
shrinks to a point in the limit of infiniten, and these infinite
number of points coincide not only with the 0 cycles gen
ated from the leftn cycle but also with the zeros obtaine
from the condition tanh(h(n21))56i for infinite n. Thus, the
same Julia set arises in DHIM as well as DDIM in the in
nite limit. In fact, the loci of the zeros of DDIM in the infi-
nite limit are identical to that of DHIM.

The Julia set arising from the distribution of the Fish
zeros possesses multifractal structure, and the correspon
generalized dimensionsDq and singularity spectrumf (a),
obtained by using derivative method and by approximat
the limiting set of the zero distribution with that ofn58
shown in Fig. 6@14,15#, are shown in Fig. 7.

FIG. 7. ~a! The generalized dimensionDq and~b! the singularity
spectrumf (a) of the Julia set associated with the renormalizati
map.
9-7
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The sinh(2h) complex plane is also widely used in stud
ing the distribution of the zeros for simple square Isi
model. The results of simple square Ising model imply t
the zeros may lie on the unit circleusinh 2h(n)u51, for ann
lattice. To obtain the distribution in the sinh(2h) complex
plane, starting with the unit circle we then performn fold
backward iterations of the map,

sinh~2h (n)!5
1

2 F @sinh~2h (n21)!#4

11@sinh~2h (n21)!#2

1
2@sinh~2h (n21)!#2

11@sinh~2h (n21)!#2G , ~40!

which is an equivalent expression of Eq.~6!. This is also a
rational map of degree 4, and the Julia set associated
this map can be approximated withn fold backward itera-
tions for a sufficiently largen. The resultant distribution o
n58 are shown in Fig. 8. Though the distribution pattern
different from that in the complex tanh(h) plane shown in
Fig. 6, owing to the fact that Julia set is an invariant set,
global multifractal structure characterized byDq and f (a) is
the same as that shown in Fig. 7.

The density near the bulk transition point has a line
behavior, and the linear behavior gives the logarithmic s
gularity of the specific heat. By observing the results of E
~26!, ~33!, and~38!, we may expect that the linear behavi
for the density near the bulk transition point disappears in
limit of infinite n. This leads to the nondiverging behavior
the specific heat as the decoration level goes infinite@24#.

VI. SUMMARY AND DISCUSSION

In summary, we study the distribution and the density
the Fisher zeros for the Ising model defined on square

FIG. 8. The zero distribution of ann lattice in the complex
sinh(2h) plane obtained from the condition of Eq.~12! for n58.
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tices with diamond-type bond decorations in this paper.
carrying out the exact renormalization map of temperatu
we can express the free energy of ann lattice as the sum of
two parts: one, referred as the local part, is mainly the c
tribution from ann level decorated bond and the other, r
ferred as the long-range part, is the contribution from
interactions amongn level decorated bonds. For the loc
part, we obtain the zeros as a set of scattered points. A
with the increase in the number of the scattered points in
distribution of the zeros as the decoration leveln increases,
all zeros belonging to the lower decoration levels are a
contained in the distribution of zeros of the higher decorat
level. The corresponding zeros of the long-range part are
union of continuous closed curves, which also form subrin
due to the intersections. For the long-range part, the dis
bution of the zeros leads towards the Julia set associated
the renormalization map, which is a rational map of deg
4. This Julia set also serves as the limiting set of the ze
obtained from the local part of the free energy. The ze
representing the critical point of ferromagnetic phase tran
tion is one of the zeros of the long-range part in the phys
region, and the locus of the critical point for an arbitra
decoration leveln is given. Along with the distribution pat-
tern, we also calculate the density of the zeros of the lo
range part for the cases ofn51 and 2. The evolution of the
density of zeros in the course of increasingn indicates that
the Julia set is a cloud of points. Thus, the Julia set has
Hausdorff dimension greater than 1 and possesses the m
fractal structure.

Comparing with the continuous closed curves appear
in the distribution of zeros of the simple square Ising mod
we have more complicated distribution patterns for the bo
decorated Ising model. The patterns remain to be continu
closed curves in both tanh(h) and sinh(2h) complex planes
for a finite decoration leveln, and only in the limit of infinite
n the continuous closed curves break into areas that con
multifractal structure. It has been demonstrated on cla
lattices that when the couplings among the nearest neigh
change from isotropic to anisotropic, the distribution of t
Fisher zeros may change from continuous curves to an
in the plane@19,20#. However, the converse is not necessa
to be true as the example shown in Ref.@26#. In regard to the
bond-decorated Ising model, the interactions among the Is
spins are effectively isotropic after the renormalization m
to the corresponding 0 lattice, although the coordinat
numbers of lattice sites are highly inhomogeneous for an
lattice with largen. This leads to the conclusion that in th
limit of infinite decoration levels the system has complete
different properties: The distribution of the zeros has mu
fractal structures, and the nature of phase transition of
system is different from that of finite decoration levels@24#.
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